107 research outputs found

    Sub-canopy terrain modelling for archaeological prospecting in forested areas through multiple-echo discrete-pulse laser ranging: a case study from Chopwell Wood, Tyne & Wear

    Get PDF
    Airborne Light Detection and Ranging (LiDAR) technology is assessed for its effectiveness as a tool for measuring terrain under forest canopy. To evaluate the capability of multiple-return discrete-pulse airborne laser ranging for detecting and resolving sub-canopy archaeological features, LiDAR data were collected from a helicopter over a forest near Gateshead in July 2009. Coal mining and timber felling have characterised Chopwell Wood, a mixed coniferous and deciduous woodland of 360 hectares, since the Industrial Revolution. The state-of-the-art Optech ALTM 3100EA LiDAR system operated at 70,000 pulses per second and raw data were acquired over the study area at a point density of over 30 points per square metre. Reference terrain elevation data were acquired on-site to ‘train’ the progressive densification filtering algorithm of Axelsson (1999; 2000) to identify laser reflections from the terrain surface. A number of sites, offering a variety of tree species, variable terrain roughness & gradient and understorey vegetation cover of varying density, were identified in the wood to assess the accuracy of filtered LiDAR terrain data. Results showed that the laser scanner over-estimated the elevation of reference terrain data by 13±17 cm under deciduous canopy and 23±18 cm under coniferous canopy. Terrain point density was calculated as 4.1 and 2.4 points per square metre under deciduous and coniferous forest, respectively. Classified terrain points were modelled with the kriging interpolation technique and topographic archaeological features, such as coal tubways (transportation routes) and areas of subsidence over relic mine shafts, were identified in digital terrain models (DTMs) using advanced exaggeration and artificial illumination techniques. Airborne LiDAR is capable of recording high quality terrain data even under the most dense forest canopy, but the accuracy and density of terrain data are controlled by a combination of tree species, forest management practices and understorey vegetation

    Comparing elevation and backscatter retrievals from CryoSat-2 and ICESat-2 over Arctic summer sea ice

    Get PDF
    The CryoSat-2 radar altimeter and ICESat-2 laser altimeter can provide complimentary measurements of the freeboard and thickness of Arctic sea ice. However, both sensors face significant challenges for accurately measuring the ice freeboard when the sea ice is melting in summer months. Here, we used crossover points between CryoSat-2 and ICESat-2 to compare elevation retrievals over summer sea ice between 2018&ndash;2021. We focused on the electromagnetic (EM) bias documented in CryoSat-2 measurements, associated with surface melt ponds over summer sea ice which cause the radar altimeter to underestimate elevation. The laser altimeter of ICESat-2 is not susceptible to this bias, but has other biases associated with melt ponds. So, we compared the elevation difference and reflectance statistics between the two satellites. We found that CryoSat-2 underestimated elevation compared to ICESat-2 by a median difference of 2.4 cm and by a median absolute deviation of 5.3 cm, while the differences between individual ICESat-2 beams and CryoSat-2 ranged between 1&ndash;3.5 cm. Spatial and temporal patterns of the bias were compared to surface roughness information derived from the ICESat-2 elevation data, the ICESat-2 photon rate (surface reflectivity), the CryoSat-2 backscatter and melt pond fraction derived from Seintnel-3 OLCI data. We found good agreement between theoretical predictions of the CryoSat-2 EM melt pond bias and our new observations; however, at typical roughness &lt;0.1 m the experimentally measured bias was larger (5&ndash;10 cm) compared to biases resulting from the theoretical simulations (0&ndash;5 cm). This intercomparison will be valuable for interpreting and improving the summer sea ice freeboard retrievals from both altimeters.</p

    A new algorithm for sea ice melt pond fraction estimation from high-resolution optical satellite imagery

    Get PDF
    doi: 10.1029/2019JC015716Abstract Melt ponds occupy a large fraction of the Arctic sea ice surface during spring and summer. The fraction and distribution of melt ponds have considerable impacts on Arctic climate and ecosystem by reducing the albedo. There is an urgency to obtain improved accuracy and a wider coverage of melt pond fraction (MPF) data for studying these processes. MPF information has generally been acquired from optical imagery. Conventional MPF algorithms based on high-resolution optical sensors have treated melt ponds as features with constant reflectance; however, the spectral reflectance of ponds can vary greatly, even at a local scale. Here we use Sentinel-2 imagery to demonstrate those previous algorithms assuming fixed melt pond-reflectance greatly underestimate MPF. We propose a new algorithm (?LinearPolar?) based on the polar coordinate transformation that treats melt ponds as variable-reflectance features and calculates MPF across the vector between melt pond and bare ice axes. The angular coordinate ? of the polar coordinate system, which is only associated with pond fraction rather than reflectance, is used to determinate MPF. By comparing the new algorithm and previous methods with IceBridge optical imagery data, across a variety of Sentinel-2 images with melt ponds at various stages of development, we show that the RMSE value of the LinearPolar algorithm is about 30% lower than for the previous algorithms. Moreover, based on a sensitivity test, the new algorithm is also less sensitive to the subjective threshold for melt pond reflectance than previous algorithms.Peer reviewe

    Sea ice roughness overlooked as a key source of uncertainty in CryoSat-2 ice freeboard retrievals

    Get PDF
    ESA's CryoSat‐2 has transformed the way we monitor Arctic sea ice, providing routine measurements of the ice thickness with near basin‐wide coverage. Past studies have shown that uncertainties in the sea ice thickness retrievals can be introduced at several steps of the processing chain, for instance in the estimation of snow depth, and snow and sea ice densities. Here, we apply a new physical model to CryoSat‐2 which further reveals sea ice surface roughness as a key overlooked feature of the conventional retrieval process. High‐resolution airborne observations demonstrate that snow and sea ice surface topography can be better characterized by a Lognormal distribution, which varies based on the ice age and surface roughness within a CryoSat‐2 footprint, than a Gaussian distribution. Based on these observations, we perform a set of simulations for the CryoSat‐2 echo waveform over ‘virtual’ sea ice surfaces with a range of roughness and radar backscattering configurations. By accounting for the variable roughness, our new Lognormal retracker produces sea ice freeboards which compare well with those derived from NASA's Operation IceBridge airborne data and extends the capability of CryoSat‐2 to profile the thinnest/smoothest sea ice and thickest/roughest ice. Our results indicate that the variable ice surface roughness contributes a systematic uncertainty in sea ice thickness of up to 20% over first‐year ice and 30% over multi‐year ice, representing one of the principal sources of pan‐Arctic sea ice thickness uncertainty

    CryoSat-2 Significant Wave Height in Polar Oceans Derived Using a Semi-Analytical Model of Synthetic Aperture Radar 2011–2019

    Get PDF
    This paper documents the retrieval of significant ocean surface wave heights in the Arctic Ocean from CryoSat-2 data. We use a semi-analytical model for an idealised synthetic aperture satellite radar or pulse-limited radar altimeter echo power. We develop a processing methodology that specifically considers both the Synthetic Aperture and Pulse Limited modes of the radar that change close to the sea ice edge within the Arctic Ocean. All CryoSat-2 echoes to date were matched by our idealised echo revealing wave heights over the period 2011–2019. Our retrieved data were contrasted to existing processing of CryoSat-2 data and wave model data, showing the improved fidelity and accuracy of the semi-analytical echo power model and the newly developed processing methods. We contrasted our data to in situ wave buoy measurements, showing improved data retrievals in seasonal sea ice covered seas. We have shown the importance of directly considering the correct satellite mode of operation in the Arctic Ocean where SAR is the dominant operating mode. Our new data are of specific use for wave model validation close to the sea ice edge and is available at the link in the data availability statement

    A metamaterial frequency-selective super-absorber that has absorbing cross section significantly bigger than the geometric cross section

    Full text link
    Using the idea of transformation optics, we propose a metamaterial device that serves as a frequency-selective super-absorber, which consists of an absorbing core material coated with a shell of isotropic double negative metamaterial. For a fixed volume, the absorption cross section of the super-absorber can be made arbitrarily large at one frequency. The double negative shell serves to amplify the evanescent tail of the high order incident cylindrical waves, which induces strong scattering and absorption. Our conclusion is supported by both analytical Mie theory and numerical finite element simulation. Interesting applications of such a device are discussed.Comment: 16 pages, 5 figure

    A Comparison of Arctic Ocean Sea Ice Export Between Nares Strait and the Canadian Arctic Archipelago

    Get PDF
    Nares Strait and the channels of the Canadian Arctic Archipelago (CAA) act as conduits for sea ice export from the Arctic Ocean but have never been directly compared. Here, we perform such a comparison for both the sea ice area and volume fluxes from October 2016 to December 2021. Nares Strait provided the largest average seasonal (October through September) ice area flux of 95 ± 8 × 103 km2 followed by the CAA regions of the Queen Elizabeth Islands (QEI) at 41 ± 7 × 103 km2 and M’Clure Strait at 2 ± 8 × 103 km2 with corresponding ice volume fluxes of 177 ± 15 km3, 59 ± 10 km3, and 8 ± 8 km3, respectively. Larger Arctic Ocean ice export at Nares Strait was associated with a shorter ice arch duration (237 days) compared to M’Clure Strait (163 days) and QEI (65 days). Seasonal Arctic Ocean ice export was dominated by Nares Strait in 2017–2019 and 2021 but was remarkably exceeded by the QEI in 2020. Large-scale atmospheric circulation patterns were found to influence the ice area flux in the absence of ice arches but no occurrence of coherent Arctic Ocean ice export events coinciding across all gates were observed. Average net seasonal Arctic Ocean ice area and volume export were 138 × 103 km2 and 245 km3, which represent ∌16% of the area and ∌25% of the volume of sea ice export from Fram Strait. Divergent Arctic Ocean export ice trajectories are apparent for Nares Strait and the QEI when compared to Fram Strait

    Airborne investigation of quasi-specular Ku-band radar scattering for satellite altimetry over snow-covered Arctic sea ice

    Get PDF
    Surface-based Ku-band radar altimetry investigations indicate the radar signal is typically backscattered from well above the snow-sea ice interface. However, this would induce a bias in satellite altimeter sea ice thickness retrievals not reflected by buoy validation. Our study presents a mechanism to potentially explain this paradox: probabilistic quasi-specular radar scattering from the snow-ice interface. We introduce the theory for this mechanism before identifying it in airborne Ku-band radar observations collected over landfast first year Arctic sea ice near Eureka, Canada, in spring 2016. Based on SAR data, this study area likely represents level first year sea ice across the Arctic. Radar backscatter from the snow and ice interfaces were estimated by co-aligning laser scanner and radar observations with in situ measurements. On average, 4-5 times more radar power was scattered from the snow-ice than the air-snow interface over first-year ice. However, return power varied by up to 20 dB between consecutive radar echoes, particularly from the snow-ice interface, depending on local slope and roughness. Measured laser-radar snow depths were more accurate when radar returns were specular, but there was no systematic bias between airborne and in situ snow depths. The probability and strength of quasi-specular returns depend on the measuring height above and slope distribution of sea ice, so these findings have implications for satellite altimetry snow depth and freeboard estimates. This mechanism could explain the apparent differences in Ku-band radar penetration into snow on sea ice when observed from the range of a surface-, airborne- or satellite-based sensor

    Brief communication:Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates

    Get PDF
    Pan-Arctic sea ice thickness has been monitored over recent decades by satellite radar altimeters such as CryoSat-2, which emits Ku-band radar waves that are assumed in publicly available sea ice thickness products to penetrate overlying snow and scatter from the ice–snow interface. Here we examine two expressions for the time delay caused by slower radar wave propagation through the snow layer and related assumptions concerning the time evolution of overlying snow density. Two conventional treatments introduce systematic underestimates of up to 15 cm into ice thickness estimates and up to 10 cm into thermodynamic growth rate estimates over multi-year ice in winter. Correcting these biases would impact a wide variety of model projections, calibrations, validations and reanalyses
    • 

    corecore